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Source-sink flow inside a rotating cylindrical cavity 

By J. M. OWEN, J. R. PINCOMBE AND R. H. ROGERS 
School of Engineering and Applied Sciences, University of Sussex 

(Received 18 May 1984 and in revised form 17 December 1984) 

The axisymmetric flow inside a rotating cavity with radial outflow or inflow of fluid 
is discussed. The basic theoretical model of Hide (1968) is extended, using the integral- 
momentum techniques of von Karman (1921), to include laminar and turbulent flows ; 
both linear and nonlinear equations are considered. The size of the source region is 
estimated using a ‘free disk’ model for the outflow case and a free vortex for the inflow 
case. In  both cases, the estimates are in good agreement with available experimental 
data. Theoretical values of the tangential component of the velocity outside the 
Ekman layers on the disks, obtained from solutions of the laminar and turbulent 
integral equations, are compared with experimental values. The experiments were 
conducted in a number of rotating-cavity rigs, with a radial outflow or inflow of air, 
and laser-Doppler anemometry was used to measure the velocity in the ‘interior core ’ 
between the Ekman layers. The measurements provide good support for the 
theoretical models over a wide range of flow rates, rotational speeds and radial 
locations. Although only isothermal flow is considered in this paper, the methods can 
be readily extended to non-isothermal flow and heat transfer. 

1. Introduction 
A problem of great importance to the gas-turbine designer is the heat transfer 

resulting from the flow of the air inside the cavity between corotating turbine or 
compressor disks. In some cases these rotating cavities are sealed at their inner and 
outer radii; in other cases they may be open to allow either radial inflow or radial 
outflow of cooling air. Such flows are, in the practical cases, usually turbulent and 
buoyancy effects are often significant. 

In this paper, an idealized model of these flows is represented by the cylindrical 
cavity shown in figure 1. This cavity has axial width 8 ,  inner radius a and outer radius 
b, and is rotating with angular speed SZ. There may be a radial outflow of fluid, with 
a volume flow rate &, from a source at the cylindrical surface of radius a to a sink 
a t  the cylindrical surface of radius b; alternatively, there may be a radial inflow, in 
which the positions of the source and the sink are reversed. The flow structures for 
both inflow and outflow are shown schematically in the figure, and will be described 
in greater detail in $4. 

Isothermal laminar flow in such a cavity has been studied analytically by Hide 
(1968), Barcilon (1970) and Bennetts & Hocking (1973), and numerically by Bennetts 
Q Jackson (1974) and by Chew, Owen & Pincombe (1984). Such flows are often 
described in terms of a Rossby number (Ro = @//2Qs, where V is the tangential 
component of velocity in the interior core) and an Ekman number (Ek = v/S2s2, where 
v is the kinematic viscosity). For small values of these non-dimensional parameters 
(more precisely, for Ro 4 Eki < 1) the inertial terms in the boundary-layer equations, 
referred to a rotating frame of reference, can be neglected to produce linear equations 
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FIGURE 1. Schematic diagram of source-sink flow in a rotating cavity. 

which can easily be solved ; for this case, each Ekman layer has a thickness of order 
EB. 

Whilst the laminar-flow case has been studied extensively, little information is 
available about turbulent source-sink flow. Ekman-layer instabilities were studied 
by Faller (1963) and by Tatro & Mollo-Christensen (1967) for the case of radial inflow. 
They observed two types of long-wavelength cellular disturbance for Re, k 56 (where 
Re, = I Q I / ~ R v T ) .  For values of Re, 2 125, the first manifestations of turbulence were 
observed as bursts of high-frequency fluctuations superimposed on a low-frequency 
periodic structure. Similar effects were observed by Owen & Pincombe ( 1 9 8 0 ~ )  for 
radial outflow ; they also noted that the measured values of the tangential component 
of velocity in the interior core departed from the theoretical linear laminar value for 
Re, greater than about 200. 

For gas-turbine and compressor disks, it is to be expected that the heat transfer 
is strongly controlled by the flow inside the Ekman layers; i t  is, therefore, useful to 
investigate these flows in some detail. In this paper, the discussion will be limited 
to the consideration of isothermal flows in which the effect of buoyancy on the flow 
is neglected. The extension of the theoretical work presented here to the more general 
case is straightforward and, currently, comparison of the extended theory with the 
data from heat-transfer experiments is in progress. It is hoped to report on this work 
in the near future. 

In order to calculate the flow in a cavity, integral-momentum techniques are used; 
these have the advantage of comparative simplicity and ease of solution for turbulent 
as well as for laminar flow. The integral equations have been used extensively for 
rotating flows relative to inertial frames of reference (see Greenspan 1968). In a 
rotating frame, however, the equations can be linearized to provide simple analytical 
solutions to the complicated problem of source-sink flows in rotating cavities. 

In  $2 of this paper, a short summary is given of the (linear) theory of Hide (1968) 



Source-sink $ow inside a rotating cavity 235 

for laminar flow and of the use by von Karman (1921) of integral-momentum 
equations to determine the turbulent flow over a ‘free disk’ rotating in an otherwise 
quiescent fluid. The integral-momentum technique is then used to  extend Hide’s work 
to the turbulent case. Since the theory is to be compared with experimental data, 
much of which has not been published elsewhere, $3 contains a brief description of 
the apparatus used in the experiments, and of the memuring techniques involved. 
The structure of the flow, together with estimates of the size of the region near the 
source, is discussed in $4, both for radial outflow and for radial inflow. In $5, the 
integral-momentum technique is applied to the full boundary-layer equations, 
referred to a rotating frame, in order to predict the thickness of the Ekman layers 
and the tangential component of velocity in the core. The velocity predictions are 
compared with the data obtained in the experiments in $6, and a summary of the 
conclusions is given in $7. 

2. Ekman layers and ‘free disk’ theory 
The theoretical work presented in this paper is largely an extension and combination 

of the (linear) theory of Hide (1968) and the (integral-momentum) theory of von 
Ktirmtin (1921). It is useful to give a brief summary of their work at  this stage before 
developing the main theme of this paper. The notation used here is not necessarily 
that used by the original authors, and it is convenient to summarize the present 
notation here. 

As shown in figure 1 (a) ,  the cavity is rotating about the z-axis with angular speed 
51 ; the disks lie in the planes z = 0 and z = 8 and most of the discussion here is related 
to the boundary layer on the disk for which z = 0. The cavity is bounded on the 
outside by a perforated shroud at r = b (where r is the distance from the axis of 
rotation). There is a central hole of radius a in one (or both) of the disks, through 
which fluid is introduced into, or extracted from, the cavity. Cylindrical polar 
coordinates ( r ,  q5, z )  are used and the corresponding velocity is (u, w&, w) referred to 
a stationary frame of reference and (u, w, w) referred to a frame of reference rotating 
with the cavity: clearly v# = v+SZr. The shear stress within the boundary layer has 
components 7,. , T~ in the radial and tangential directions respectively ; the pressure 
(which, as is usual in boundary-layer theory, is independent of z within the boundary 
layer) is denoted by j j .  Overbars are used throughout to indicate values outside the 
boundary layers on the disks, and the subscript zero is used for values on the disk 
z = 0. 

The volume flow rate of the fluid entering the cavity is Q; Q is taken to be positive 
if the flow is outwards and negative if the flow is inwards. The local volume flow rate 
through one of the boundary layers on the disks at a radius r is denoted by Q1. The 
density of the fluid is p, its dynamic viscosity is p (the kinematic viscosity being 
v = p/p ) ;  for isothermal flow, these quantities are assumed to remain constant. 

There are two non-dimensional parameters which are used extensively : these are 
the volume flow-rate coefficient 

and the rotational Reynolds number 

C, = Q/vb,  (2.1) 

Re9 = 51b2/v. (2.2) 

It may be noted that Re4 is the reciprocal of the Ekman number defined in the 
Introduction. In  addition, it is occasionally useful to use the radial Reynolds number 

Re,. = I Q 1/2~vr. (2.3) 
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2.1. The Ekmun layers in laminar Jlow 
For incompressible, laminar flow in which Coriolis forces dominate over inertial and 
centrifugal forces, Ekman layers (see, for example, Greenspan 1968) form on the disks. 
Outside the Ekman layers, there is a balance between the Coriolis and the pressure 
forces so that, in a frame of reference rotating with the cavity, 

From these equations, together with the equation of continuity 

a(ru) a@ a@ 
ar a4 a Z  

-+-+r-  = 0, 

it is clear that aG/az = 0 (this is also a consequence of the Taylor-Proudman 
theorem). For the isothermal rotating cavity, it is reasonable to assume that there 
is symmetry about the mid-axial plane z = fa; it follows that, in the region between 
the Ekman layers in the cavity, Ur = 0 and the Ekman layers are non-entraining. This 
is a special case of the result first proved by Hide (1968), and it true both for laminar 
and for turbulent incompressible flow ; it is not necessarily true for flows which are 
not symmetrical about the mid-axial plane. 

Within the Ekman layers viscous forces are also important; after the usual 
boundary-layer approximations are made, it is found that, for laminar flow, 

asu a Z v  
-252(v-@) = u - ,  2Q(u-U) = v- 

a22 a22 

The corresponding boundary conditions are 

u = w = 0 whenz = 0, 
u+U,  v+V asz-+co. 

As long as the flow is axisymmetric, i t  is clear from the second of (2.4) that ii = 0; it 
is worth noting that this is true also for turbulent flow and for flows where buoyancy 
is important. 

The solution of (2 .5) ,  subject to the conditions (2 .6) ,  is (when U = 0): 

where 

The local value of the volume flow rate is 

and, using (2 .7) ,  this gives 

- Q1= -x lTeiZ('>' 
ub Or b ' 

(2.9) 

(2.10) 

If the incoming fluid is equally divided between the two Ekman layers in the cavity, 
so that Q1 = 8, i t  follows from (2.10) that 

(2.11) 
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For isothermal turbulent flow, i t  is possible to find a solution to the equations 
corresponding to (2.5) if a mixing-length theory is used for the Reynolds stresses, but 
there appears to be no simple expression such as (2.11) relating 6 to C, and Re,. 

2.2. The free disk 
The flow due to a disk rotating in free space was first discussed by von Khrmtin (1921). 
The equations valid in the boundary layer on the disk (at z = 0) are, in a stationary 
frame of reference, 

I i a  aw 
- -(ru)+- = 0, 
r ar az 

(2.12) 

and the boundary conditions are 

(2.13) 
u = 0, v, = Br, w = 0 when z = 0, 

u+O, v20 whenz-tco. 

Cochran (1934) found a similarity solution for this system in the laminar case. His 
work will not be discussed here, but it is useful to quote the values he obtained for 
Q1 and for the ‘thickness’, 6*, of the boundary layer, outside of which the tangential 
component of velocity is effectively zero. These are given by 

I 

(2.14) 

For the turbulent 
assumed that, in the 

case, von KkmBn used an integral momentum method; he 
boundary layer, 

lo, z >  s*, 
(2.15) 

(2.16) 
lo ,  z >  s*, 

where ul and 6* are functions of r to be determined. Equations (2.12) are integrated 
with respect to z from 0 to 00, w being eliminated and the expressions in (2.15) and 
(2.16) used for u and 21,. This gives expressions for 7r,0 and 7,, o ,  the values of 7, and 
7, respectively when z = 0. 

It is assumed that, for z/6* 4 1, 

and (by analogy with flow in a pipe) 

(2.17) 

(2.18) 

where 
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After some manipulation, this gives 
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P 

P 

(2.19) 

and these expressions are substituted into the integrated equations of motion. This 
results in two ordinary differential equations for the unknown quantities u1 and S*. 

The solution given by von Karman for these equations is 

(2.20) 

and i t  is possible to show that, for any initial conditions (at r = 0), the solution rapidly 
converges to that given by (2.20).  The value of (using ( 2 . 9 ) )  is then given by 

vb = 0.219 Re$ (i)'. (2.21) 

It is of interest to note that, for both laminar and turbulent flow over the free disk, 
Q1 depends on r (in contrast to the Ekman layer on the disks in a rotating cavity, 
as discussed in 92.1).  Thus the boundary layer entrains fluid from its (otherwise 
quiescent) surroundings ; this is sometimes called the 'free disk pumping ' effect. 

2.3.  The Ekmun layers i n  turbulent flow 
Equafions (2.4) are valid in the core for turbulent flow, as well as for laminar flow. 
Hence U = 0, and the Ekman-layer equations may be written 

1 aT, 1 
-2L?(w-V)=-- - ,  2 5 2 u = - d .  

P P az 
(2.22) 

For turbulent flow, it may be assumed that u is given by (2.15) and, by analogy with 
(2 .16) ,  that 

(2.23) 

Integration of (2.22) with respect to z from 0 to co then gives 

32 = -$26&6", k!! = -%QU, &*. (2.24) 

By an argument analogous to that used by von Karman to obtain the relations 

P P 

(2 .19) ,  it may be shown that 

P 

P 

(2.25) 

Equations (2.24) and (2.25) do not involve derivatives and can be solved to give 

-=--- 2 ' 1 5  - -0.553, 
2) 7 
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and 
8* 

the minus sign in the expression for ul/@ is necessary to ensure that 8* is positive. 
It follows that 

1 = - (sgn V) 0.140 
vb 

(2.26) 

and, when Q1 = 9, 
- 
- V = - (sgn Q) 2.22 I C, It Re 2 * (3“. 
51r 

(2.27) 

3. The experimental apparatus 
Before discussing the extended theory presented here, it  is useful to describe the 

experiments, so that comparisons may be made during the course of the ensuing 
argument. Flow visualization and measurements of velocity using laser-Doppler 
anemometry (LDA) were made in three different rigs, which are described in 83.1, 
using a wide variety of optical instrumentation which is described in j3.2. Only the 
basic features of the rigs and instrumentation are presented here, and further details 
are given in the references cited. 

3.1. The rotating cavity rigs 
Each rig consisted of two disks of radius b, each disk being mounted on a central 
stainless-steel tube of bore 2a and surrounded by one of a series of perforated 
cylindrical shrouds (see figure 1 a) ; the axial distance between the disks was s. In 
rig 3, a central driving shaft (diameter x +) was fitted through the tubes. Details 
of the rigs, together with references where more detailed accounts are given, are 
summarized in table 1, and the shroud geometries (which were chosen to model 
certain engine configurations) are shown in table 2. 

In each case, the whole assembly (that is, the two disks, the tubes, the shroud and, 
in rig 3, the driving shaft) was rotated at  angular speed 51 using a variable-speed 
electric motor. Air was fed into the cavity, using a centrifugal blower, at volume flow 
rate &, the value of Q being measured by an Annubar differential-pressure sensing 
element or by rotameters. The maximum values of 52 and Q which could be achieved 
for the different rigs are shown in table 1, together with the accuracy with which they 
could be determined. 

All the rigs could be used for ‘outflow’ experiments in which the air was fed into 
the centre of the cavity through one of the tubes and removed through the shroud 
(only shrouds A and D were used for the outflow experiments in rig 3). In a few 
experiments in rig 1, a tubular gauze screen waa inserted into the central tubes and 
rotated with them. The gauze ensured that the air entered the cavity with no axial 
component of velocity and with a radial component independent of position ; these 
experiments are said to have a ‘radial inlet’. The other outflow experiments, where 
no gauze was used, are referred to as having an ‘axial inlet ’. 

Owing to leakage through the seals between the rotating and stationary components 
in rig 3, the measured flow rate had to be corrected, and the overall accuracy was 
thereby reduced. For this reaaon, only the experimental data for which the correction 
was less than 25 % of the corrected value of the flow rate are included in this paper. 

In addition to the ‘outflow’ experiments, rig 3 was also used for ‘inflow’ 
experiments in which air entered the cavity through the shroud and was extracted 
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Disks 
Material 
Outer radius, b 
Axial spacing, s 

Bore, 2a 

Max. angular speed, Q,,, 
Max. rotational Reynolds 

Accuracy 

Max. volume flow 

Max. volume flow 

Accuracy 

Tube 

Rot at i o n 

number, Re), max 

Flow rate 

rate, Qm*x 

coefficient, Cw, max 

Rig 1 
Owen t 
Pincombe (1980~) 

Perspex 
190 mm 
50.7 mm 

38 mm 

2600 rev/min 
6.5 x lo6 

Better than 1 % 

0.013 m3/s 
47 10 

Better than 3 % 

Rig 2 
Pincombe (1984) 

Polycarbonate 
442.5 mm 
59 mm 

88.6 mm 

loo0 rev/min 
1.3 x lo6 

Better than 0.5 % 

0.02 mS/s 
3000 

Better than 3 yo 

Rig 3 
Owen L 
Bilimoria (1977) 

Stainless steel 
381 mm 
50.7 mm 

76.2 mm 

1000 rev/min 
106 

Better than 0.5 yo 

0.013 mS/s 
2400 

Better than 3 % 

TABLE 1. Data for the three rigs used (details of the shrouds are shown 
in table 2; C,  and Re) are defined in (2.1) and (2.2)) 

through one of the central tubes. All six shrouds were used, and the swirl of the air 
at inlet varied from shroud to shroud. The shrouds with large perforations allowed 
air to enter the cavity with a tangential component of velocity significantly less than 
that of the shroud itself (shroud E was the most extreme case of this). Smaller 
perforations had the effect of increasing the swirl of the air before it entered the cavity ; 
in particular, air passing through the foam-filled slit in shroud F entered with a 
tangential component of velocity virtually indistinguishable from that of the shroud 
itself. 

3.2. The optical instrumentation 
For the flow-visualization experiments, a Concept smoke generator, which produced 
clouds of oil particles whose diameter was approximately 0.5 pm, was used in 
conjunction with a 4 W argon-ion laser. Full details of the techniques involved are 
given by Owen & Pincombe (1980b). 

For the LDA measurements in rigs 1 and 2, the optics were arranged in a 
forward-scatter real-fringe mode, with frequency shifting ; for rig 3, a back-scatter 
mode was used, without frequency shifting. For rigs 1 and 3, the Doppler signal was 
processed using a tracking filter; this necessitated relatively high rates of seeding, 
and oil particles (generated from a Norgren ‘micro-fog lubricator ’) were injected into 
the air before it entered the cavity. For rig 2, a photon-correlator was used to process 
the signal; although velocity measurements could, in principle, be accomplished in 
this case without ‘artificial seeding ), in practice oil particles (produced by the Concept 
generator) were introduced into the laboratory atmosphere. 

In  the absence of large velocity gradients (see Owen & Rogers 1975), the mean 
velocity could be measured by the tracking filter with an accuracy of approximately 
1 Yo. In  an appraisal test of the photon-correlator (the measurements, which are not 
included in this paper, were made in rig 3), velocity measurements made by the 
tracking filter and by the photon-correlator were typically within 1 yo of each other. 

Further details of the optical instrumentation are given by Pincombe (1984). 
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4. The flow structure 
A schematic diagram of the flow structure is shown in figure 1 (a) for radial outflow 

and in figure 1 (b) for radial inflow; photographs of the flow in four cases of laminar 
outflow are shown in figure 2. The details of the photographic techniques have been 
described by Owen & Pincombe (1980~):  each photograph shows the smoke pattern 
in an illuminated (r,  2)-plane in rig 1 ; the white, smoke-filled areas contain air which 
has entered the cavity through the inlet at r = a (that is, x = 0.1). It should also be 
remarked that the photographs show mirror images of the flow in the planes z = 0 
and z = s, as well as the flow itself. Although figures 2(a) and (b) were produced for 
the same flow conditions, figure 2 (a) was photographed within seconds of the smoke 
entering the cavity, whilst figure 2 (b) was photographed shortly after. 

As first demonstrated by Hide (1968), these photographs confirm that, for laminar 
outflow, the flow is divided into four types of region, as indicated in figure l(a). 
Photographs of laminar inflow (not presented here) show the same four types of region 
(again confirming Hide’s results). Further, visual observation revealed the same flow 
structure for turbulent flow (both outflow and inflow); this case was not considered 
by Hide. In all cases, there are 

(i) a source region which distributes the fluid from the source to the Ekman layers 
(the term ‘source layer’, used by Hide and other authors, seems inappropriate since 
the region may occupy a substantial portion of the cavity) ; 

(ii) Ekman layers on the disks, in which the volume flow rate is constant; 
(iii) a sink layer which redistributes the flow from the Ekman layers into the sink; 

and 
(iv) an interior core (showing dark in the photographs of figure 2) where the radial 

and axial components of velocity are zero and the tangential component is independent 
of 2. 

4.1. The source region 
4.1 .l .  Radial outflow 

As explained in $3, two types of inlet were used in the experiments. The radial inlet 
gave a symmetrical flow structure in the source region, as shown in figures 1 (a), 2 (a) 
and 2(b); for the axial inlet, the flow was asymmetrical about the axial plane z = isLs, 
as shown in figures 2 (c) and (d). 

The simplest model of boundary-layer flow inside the source region is that of the 
free disk described in 52.2. For the radial inlet, fluid from the source is entrained 
equally into the boundary layer on each disk, and, for r < re (where re is the radius 
at  which these ‘entrainment layers ’ turn into non-entraining Ekman layers), (2.14) 
for laminar flow or (2.21) for turbulent flow is assumed to be valid. 

It is assumed that the entrainment layer persists until exactly half the incoming 
fluid has been entrained. Hence, w$en r = re, Q1 = 9. Writing, for convenience, 

it follows that: 
x, = 0.424dw Re2 for laminar flow ; 

x, = 1.37@ Re? for turbulent flow. 

The first of equations (4.2) agrees closely with the correlation obtained by Owen & 
Pincombe (1980~).  The equation gives x, = 0.30 when C,  = 79 and Re, = 2.5 x lo4; 
this position is marked on figures 2 (a) and (b). 
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(d (4 

FIGURE 2. Flow visualization inside a rotating cavity (G = 0.27, a /b  = 0.10, Re) = 2.5 x lo4) with 
radial outflow. Radial inlet: (a) and ( b )  C, = 79. Axial inlet: (c) C,  = 79; (d)  C, = 314. 
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Figure 2 (c) shows the flow structure for the axial inlet case, where fluid enters the 
cavity through the centre of the upstream disk (the left-hand disk in the figure). For 
this flow rate and rotational speed (C,  = 79 and Re4 =. 2.5 x lo4), vortex breakdown 
occurs and the central jet loses its axisymmetry. Fluid from the jet appears to be 
entrained equally by the two disks, and (4.2) provides a satisfactory estimate of the 
size of the source region: the value x, = 0.30 is shown on figure 2(c). 

Figure 2 (d) shows the flow structure observed for the axial case with a higher flow 
rate (C, = 314, Re$ = 2.5 x lo4) where the central jet impinges axisymmetrically 
onto the downstream disk. Flow visualization reveals that the smoke-filled fluid 
flows radially outward on the downstream disk, and smoke fills both the Ekman 
layers and the sink before it completely fills the source region. The interpretation 
(which is supported by the numerical solutions of Chew, Owen & Pincombe 1984) of 
this extreme case is that, after impinging on the downstream disk, the flow moves 
radially outwards as a wall jet. At a certain radius, some of the fluid detaches itself 
from the wall jet until, within a very small distance, exactly half of the original fluid 
has been disgorged from the downstream disk. This fluid flows radially inward and 
towards the upstream disk, where it is entrained into an entrainment layer (similar 
to the free-disk type that occurs with a radial inlet). It follows that, at the outer 
edge of the source region, the fluid has divided into two equal parts ready for entry 
into the Ekman layers, exactly as for a radial inlet, but the value of x, on the down- 
stream disk is somewhat larger for an axial inlet. 

An estimate of the radial extent of the source region near the downstream disk can 
be made by assuming that all (instead of half) the fluid is entrained by the down- 
stream disk. The free-disk solutions, given in 52.2, are used for this estimate with 
Q1 = &. For the axial inlet case, (2.14) and (2.21) give: 

x, = O.599dw Re2 for the laminar case; 

x, = 1.79@ Re41a for the turbulent case. 
(4-3) 1 1 

On the upstream disk (4.2) holds. Using the first of (4.2) for the upstream disk and 
that of (4.3) for the downstream disk, the corresponding values of x, for the two 
disks, with the data of figure 2(d), are 0.60 and 0.85; these positions are marked on 
figure 2(d). It was found that the second of (4.3) was in good agreement with the 
size of the source region measured using flow visualization on rig 2, which had an 
axial inlet; these experiments, which will be reported elsewhere, were conducted for 
950 < C, < 6600 and lo5 < Re4 < 1.3 x lo6. 

4.1.2. Radial inJlow 

The various shrouds (as described in §3), through which fluid enters the cavity, 
give different values of the tangential component of velocity of the incoming fluid. 
This is given by 

where c (0 < c < 1)  is the ‘swirl fraction’, which may vary from shroud to shroud. 

momentum is conserved, is that of a free vortex. It follows that 

v p a  = c, 

The model used for the flow in the cavity far from the disks, where angular 

in the source region. Some of the fluid will be entrained into the boundary layers on 
the disks: the flow in these entrainment layers will have an outward component of 
velocity if V,/Qr < 1 and an inward component if 3,/Qr > 1.  
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The entrainment can be quantified by assuming that (2.10) for laminar flow, or 
(2.26) for turbulent flow, gives a relationship between the volume flow rate through 
the layer and the tangential component of velocity outside the layer. Since 
V4 = G+Qr, it follows that 

- " = 71: Re$ (1 - czP2) for laminar flow, 
vb (4.5) 

(4.6) and 

There is clearly a stagnation point on the disk, both for laminar and for turbulent 
flow, when x = d. For values of x greater than this, there is outflow in the entrainment 
layers; for smaller values of x there is inflow. 

It is interesting to note that, by putting c = 0, this argument can be used when 
the flow outside the Ekman layer is quiescent. In  this case, (4.5) and (4.6) give 
estimates for the flow entrained by the free disk with no imposed radial flow. For 
laminar flow, this 'linear Ekman layer' estimate is 1.16 times the value quoted in 
(2.14), which was found by Cochran (1934) using the full Navier-Stokes equations; 
the two values are surprisingly close. 

It is further postulated that, as in the case of outflow, the source region extends 
from r = b to r = re, where exactly half the incoming fluid has been entrained by each 
disk. Thus Q1 = 9 when r = re, and it follows that 

- " = sgn (1 - C X - ~ )  0.293 I 1 - It Re$ x? for turbulent flow. vb 

for laminar flow, (4.7) 

(4.8) 
A 8 1  and x, = [c-2.22 I C,  )%Reb' q ] z  for turbulent flow. 

The recirculation predicted for x > ct has been observed experimentally, and flow 
visualization has been used to estimate the size of the source region. Good agreement 
with the values of x, given by (4.7) and (4.8) was obtained using rig 3 with the six 
different shrouds described in $3 for a wide range of flow rates and rotational speeds 
(C, < 1800, 5 x lo4 < Re4 < lo6). It was found that for shrouds A, B, C and D the 
appropriate value of c was 0.54 for laminar flow and 0.59 for turbulent flow. For the 
foam-filled shroud F, which was designed to produce solid-body rotation at inlet, it  
was found that c = 1 gave a good correlation. For more details of these measurements, 
see Firouzian et al. (1985). 

4.2. The Ekmn layers 
Owen t Pincombe (1980a) made detailed measurements of the radial and tangential 
components of velocity inside the Ekman layers for a rotating cavity with isothermal 
radial outflow. Using flow visualization, they observed long-wavelength ripples in the 
Ekman layer adjacent to the core region. These ripples had a wavelength approxi- 
mately equal to 300, where D is given by (2.8), and appeared to have a cellular 
structure; they were visible for 

32 
Re, > 78--C,Re;!~-~, 

71: (4.9) 

where the parameter Re,. is the radial Reynolds number defined in (2.3). These 
instabilities, observed in outflow, appear to be related to the type I1 waves described 
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by Tatro & Mollo-Christensen (1967) for wavelengths between 2 3 0  and 3 3 0  which 
occurred, during radial inflow, when 

29.2 
Re, > 56.3--CW R ~ $ X - ~ .  

x 
(4.10) 

Short-wavelength ‘ finger-like ’ disturbances were also observed by Owen & Pincombe : 
these propagated axially from the long-wavelength cells into the core when the 
critical value of Re, was exceeded by between 50 and 100 yo. The type I instabilities 
discussed by Tatro & Mollo-Christensen and also by Faller (1963) have a wavelength 
of approximately 120 and occur when 

1.83 
Re, > 1 2 5 - - 4 ,  R ~ $ x - ~ .  

x 
(4.11) 

For Re, > 125, these authors found that, for radial inflow, both types of wave were 
present, and the first manifestations of turbulence were bursts of high-frequency 
fluctuations. 

For radial outflow with Re, > 200, Owen & Pincombe observed that the tangential 
component of velocity measured in the core departed significantly from that 
predicted by the linear theory for laminar flow; this was taken to signal the onset 
of turbulent Ekman-layer flow. For the linear theory, the tangential component of 
velocity given by (2.11), for laminar flow, and (2.27), for turbulent flow, are equal 
when Re,. x 180. Although the nonlinear theory presented in this paper will give a 
slightly different value, Re, = 180 gives a satisfactory criterion for transition from 
laminar to turbulent flow. 

4.3. The sink layer 
For most measurements presented in this paper, the radial thickness of the sink layer 
was significantly smaller (usually by at  least an order of magnitude) than that of the 
source region. For laminar outflow, measurements of the size of the sink layer by Owen 
6 Pincombe (1980a) were consistent with the theoretical estimate of Hide (1968). 
Owing to the relatively small thickness of the sink layer, no attempt has been made 
to correlate measurements for turbulent radial outflow nor for inflow, whether 
laminar or turbulent. For inflow, the sink layer was always limited to the region 
x < 0.15. 

A phenomenon observed during the radial-outflow experiments on rig 1 was that 
of fluid ‘ingress’ through the shroud at x = 1. This is demonstrated in figure 2 ( b )  
where there is a white smoke-filled region near the sink layer. Above a certain 
rotational speed, which depended on the flow rate and on the hole size in the shroud, 
there was evidence that external fluid was entrained into the cavity through the holes 
in the shroud, despite the fact that the net flow was radially outward. This ingress 
phenomenon has been reported for rotor-stator systems (see Bayley & Owen 1970; 
Phadke & Owen 1983) but never, as far as the present authors are aware, for a rotating 
cavity with radial outflow. 

Flow-visualization tests showed that (as in the rotor-stator case) the ‘ critical ’ 
speed, beyond which ingress occurred, was proportional to the flow rate and decreased 
with increasing hole size. For the small-hole, standard-hole and lage-hole shrouds 
with rig 1,  ingress was observed for Re,/C, > 1100, 110 and 50 respectively, over 
a range of Re, up to 3 x lo6. For rig 3, ingress was observed, in some experiments, 
for Re$/C, > 440. 
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The ingress of external fluid is attributed to the fact that, at a sufficiently high 
rotatiohal speed, the pressure level inside the cavity may become sub-atmospheric. 
Thus ingress can occur even when there is a superimposed outflow of fluid. It is not 
known whether the ingress is confined to some holes in the shroud while egress occurs 
at  others, or whether ingress and egress occur simultaneously at the same hole. 

Referring to figure 2 (a) ,  the outer sink layer is clearly visible ; in figure 2 (b) (which 
wasphotographedshortly after figure 2a) theingressextends toz  = 0.76. Photographs 
taken at later times reveal that the ‘ingress region’ does not extend inwards beyond 
this. It is interesting to compare the radial extent of the ingress region for radial 
outflow with the source region for radial inflow discussed above. In  the limiting case 
of zero inflow, with the swirl fraction c = 0.54, (4.7) gives z, = 0.73; this suggests that 
the ingress region for radial outflow is similar to the source region for radial inflow. 

Under certain conditions, the ingressive fluid can significantly affect the flow 
structure throughout the cavity. This was observed when the large-hole shroud was 
used in rig 1 : when ingress occurred at the same time as vortex breakdown in the 
inlet jet at the centre, the axisymmetry of the flow was disrupted, the Ekman layers 
disappeare 1 and the inlet jet precessed violently about the axis of rotation. 

4.4. The effect of buoyancy 
When both disks are symmetrically heated to a temperature greater than that of the 
incoming fluid, the flow structure is similar to that for isothermal flow. For high 
rotational speeds, when gravitational effects are insignificant, the only modification 
necessary to the theory presented in this paper is the inclusion of the effect of variable 
density and viscosity, together with an energy equation. Work on the heat-transfer 
problem is well advanced and will be reported elsewhere. 

When one disk only is heated, there is an ‘axial wind’ in the core from the hot 
disk to the cold disk. The effect of this is to make Q1 dependent on r, even in the 
Ekman layers; the theory must therefore involve a matching of the boundary layers 
on the two disks through the core region which lies between them. Work on this 
problem is well advanced. 

The other effect of buoyancy which needs to be mentioned is that, for radial outflow 
when the disks are differentially heated, flow near the hot disk can be destabilized. 

5. The nonlinear equations of motion 
5.1. The basic equations 

The discussion in $4.2 of the boundary layers (outside the source and sink regions) 
on the disks of the rotating cavity was in terms of the non-entraining Ekman layers 
described by the linear theory of 982.1 and 2.3. When the nonlinear inertial and 
centrifugal terms are included in the equations of motion, it is not strictly proper 
to retain the term ‘Ekman layer’ since, by definition, Ekman layers occur only when 
the nonlinear terms are negligible. However, the non-entraining boundary layers 
which occur in practice are so similar to Ekman layers that, in this paper, the term 
‘Ekman layer’ is retained even in the nonlinear case. It will be seen later that, even 
[when individual nonlinear terms are not negligible, there tends to be a self-cancelling 
effect so that departure from the Ekman solution is quite small : this gives aposteriori 
support to the usage described. (The term ‘boundary layer’ is used throughout as 
a generic term to include both the ‘nonlinear Ekman layer’ and the ‘entrainment 
layer ’ in the source region.) 
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The equations of continuity and momentum in the boundary layers on the disks, 
referred to axes rotating with the cavity, are (when ii = 0) : 

together with the boundary conditions (for the disk z = 0) : 

I u = v = w = 0 whenz = 0; 
u+O, v+V whenz+oo. 

(It may be noticed that (2.22) are approximations to (5.2) and (5,3).) 
It i s  useful to rewrite (6.2) and (5.3), using (5.1), as 

i a  a V 2 - 9  I a7 - - ( r d )  + - (uw) - - - 
t ar a Z  r P as 

262(v-er) = - I, 

i a  a 1 a7 
- - (r2uv) +- (vw) + 252u = - 2. 
rz i3r az P az 

(5.4) 

It is next assumed that (see 952.2, 2.3) 

u = u,f(z/S*), (5.7) 

and v = V[l -g (z /S* ) ] ,  (6.8) 

'I = z/S*,  (5.9) 

where ul,V, 6* are, as yet, unknown functions of r ;  the functionsf(q), g ( v ) ,  where 

must be specified. The theory will be developed for general functionsf(q), g ( q )  subject 
to the conditions 

f(0) = 0, g(0)  = 1 ,  f ( r ) + O ,  g(' I )+O as 'I+a, (5.10) 

so that the conditions on u and v in (5.4) are automatically satisfied. For comparison 
with experiment, particular forms off and g are used, as described below. 

For laminar flow, by analogy with the Ekman-layer solutions given in (2.7), 

f(7) = e-nv sin (xy), g(7)  = e-"v cos (xq) .  (5.11) 

For turbulent flow, a generalization of (2.15) and (2.16) is used of the form 

(5.12) 

It is usual to follow von KarmBn and to take n = 7 (and this will be done in 
the comparisons below), but several authors have suggested that the different 
values of n are appropriate for different Reynolds-number ranges (see, for example, 
Schlichting 1978). 

Once the functionsf(q), g ( 7 )  have been specified, (5.5) and (5.6) may be integrated 

' 'I ljl 
f('I) = v1'v -q) ,  g( ' I )  = 1 -'I1'n 
f('I) = g(7) = 09 'I > 1 .  

to give 
(5.13) 
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i d  1 
(11-1 )--(r2~,fi&*)+25211ul r2dr = - ; T + , ~ ,  

r w  

- -  
r m  
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(5.14) 

(5.15) 

The values of I , ,  12, I, ,  I,, I5 for the special cases defined in (5.11) and (5.12) are shown 
in table 3. 

The local volume flow rate is given by 

Q1 = 2x1, rul a*, (5.16) 

and it  is convenient to write (5.13) and (5.14) using Q1 instead of w1 as one of the 
dependent variables. They become 

(5.18) 

For laminar flow, the values of T,,, and T+, are given by 

For turbulent flow, relations similar to (2.25) may be found in the form 

(5.19) 

(6.20) 

(5.21) 

where the coefficients K, for n = 5, 6, 7, 8, 9 are given in table 4. (The value of 
shown in the table is discussed below; its value is given in (5.35).) In  terms of the 
new dependent variable Q1, these expressions become 

(5.22) 
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Turbulent flow 
Laminar 

flow l/n power law n = 7  

4 i n  nZ/(n+ 1) (2n+ 1)  0.408 
4 in na/(n+1)(n+2)(3n+2) 0.207 
I a  in 3ne/2(n + 1) (n + 2) (2n + 1) 0.0681 
4 in I/@+ 1) 0.125 
I5 fa 2/(n+ 1) (n+2) 0.0278 

TABLE 3. Values of the coefficients defined in (5.15) 

n 1 5 6 7 8 9 

K"n A 0.0384 0.0290 0.0225 0.0179 0.0145 

Pn A 0.200 0.176 0.159 0.145 0.133 

P 2 1.67 1.64 1.63 1.61 1.60 

Kn dn 0.196 0.170 0.150 0.134 0.120 

PI, 1x 1.58 1.90 2.22 2.55 2.90 

TABLE 4. Values of various parameters for six values of n. 
The values for n = 1 correspond to laminar flow 

At this stage, there are two equations, (5.17) and (5.18), for the three unknown 
quantities Q1, @ and S*. If any one of the three quantities is known, the other two 
can be calculated. In practice, either @ or Q1 is usually known or can be assumed. 

If the distribution of 5 is known (for example, @/Qr = - 1 for the free disk or 
@/Qr = C X - ~  for a free vortex), then Q1 and S* can be computed. In  this way, more 
general estimates of the size of the source region may be found than those obtained 
from the linear equations discussed in $4.1. A number of such computations has 
been made, but the results are not presented here: they are more important when 
buoyancy effects are significant. 

If the value of Q1 is known, as is the case for the Ekman layers on the disks (where 
Q1 = !&), then (5.17) and (5.18) can be used to calculate V and S*. It is this case that 
will be developed in the next section. 

5.2. The non-dimensional form 
A t  this stage, Q1 is taken to be a function of r (although, in the Ekman layers, Q1 

is constant); this will enable the equations to be used for the entrainment layers if 
alternative assum.ptions are made for the flow in the source region. 

It is convenient to define a parameter 

3n+5 p = -  
2(n+1)' 

(5.23) 

where n = 1 for laminar flow and l /n is the exponent of 7 used in (5.12) for turbulent 
flow. Composite parameters A, A, are defined as 

(5.24) 

A, = sgn (Q1) pn I C,  1P-l Re;:, (5.25) 
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where, for laminar flow, 

1 [ 167PG I , ] ' f P  

pn = @4n411 14)i K ,  Il + I4 

(5.26) 

(5.27) 

The values of P, for n = 1,5,6,7,8,9 are given in table 4. 
Application of the method described (for the special case of turbulent flow with 

n = 7)  to solve the linear equations (2.22) gives, for both laminar and turbulent flow, 

Qin = -Ahox-, (5.28) 

(5.29) 

where the subscript lin is used to indicate the solution of the linear equations, and 

V = 6/Qr. (5.30) 

For laminar flow, the coefficient in (5.29) is 

and, for turbulent flow, 

(5.31) 

(5.32) 

The numerical values of P, for n = 1, 5, 6, 7,  8, 9 are given in table 4. For ease of 
computation, it is worth noting that, for turbulent flow, 

4n(I1I4)'PnP, = 1. (5.33) 

Providing f(0) = -g'(O) for laminar flow, (5.26), (5.31) reduce to (5.27), (5.32) 
respectively (with n = 1)  as long as 

e = If(0) I = I g'(0) I- (5.34) 

The value of Kl given in table 4 is obtained from this equation. 

solution as 
The non-dimensional boundary-layer thickness is defined in terms of the linear 

S = S*/S&. (5.35) 

Then (5.17) and (5.18), which have QI,6 and S* as dependent variables and r as the 
independent variable, become 

where 

x dS X d A  X P ' P  X T P  _ _ -  a & - A'% -&+A,+A,-+(A, V + A ,  V ) - ,  
AS A2 

x dV X d A  A X P Y  

A. dx V AS ' & - A,- - - + A , + ~ + A l o - -  

(5.36) 

(5.37) 

(5.38) 

and the coefficients A, are tabulated in table 5.  (The coefficient A, has been reserved 
for use when buoyancy effects are included.) It is of interest to note that, for the linear 

9 PLY 1% 
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j 
1 
2 
3 
4 
5 
7 
8 
9 

10 

Turbulent flow 
Laminar 

4 flow l/n power law n = 7  

P/@-1)  2 (3n+5)/(n+3) 

2Il/IZ 8 2(n+2)(3n+2)/n(2n+1) 
IW4 - I&)/& 1 4  5 2(n+1)(3%+2)/n(2n+l) 
2Il/I* 8 2(n+2)(3n+2)/n(2n+l) 
I Z / @  - 1) (11 - 1 3 )  f 6(n+ l) /(n+3) (2n+ 1 )  
-2 -2 -2 
- 2Il/(Il - 13) -8  -4(n+2)/(2n+ 1)  
-211/(I1-13) -8  -4(n+2)/(2n+ 1)  

--@-I) - 1  -(n+3)/2(n+l) 

TABLE 5. Coefficients in (5.36) and (5.37) 

2.6 
-0.625 

3.94 
3.50 
3.94 
0.32 

-2.0 
-2.4 
-2.4 

equations, the only terms remaining in (5.36) and (5.37) are those involving the 
coefficients A,, A,, A, and Ale. 

In the Ekman layers, where &, = s, it is convenient to define the new independent 
variable 

5 = X P / h , .  (5.39) 

Noting that dh/dx = 0 and h = A, in these layers, (5.36) to (5.38) become 

g = +;+A. Y+ (A,  P +A,  V )  E63 1 , 
d'v-" dE - P - (A ,  V+A,) -+A, ,  E l F I  V -  , 

(5.40) 

(5.41) 

(5.42) where 

These equations are in a form suitable for numerical integration (using, for example, 
a Runga-Kutta technique) as long as suitable initial values are chosen. 

5.3. Initial values 
5.3.1 . Radial outflow 

If the model described in $4.1.1 is used for the source region, the starting value 
of 6 is emily derived from either (4.2) or (4.3). The corresponding initial value of 6 
is given by (2.14) or (2.20), and the initial value of V is - 1 (since the model takes 
v6 = 0). These values are given in table 6. 

It is of interest, however, to investigate the effect of different starting and initial 
conditions, and the results are shown in figures 3 and 4 for both laminar and turbulent 
flow. It might well be expected that Ekman-layer-type flow begins within the source 
region, starting a t  values of much less than those given in table 6. (It will be 
demonstrated in $6 that such starting values of are suitable for predicting the 
tangential component of velocity.) It appears from figures 3 and 4 that, for a wide 
range of starting conditions, the dependence of V on gives a 'universal' curve; the 
'universal ' curves for laminar flow and turbulent flow are, of course, slightly different. 

It is remarkable that all the solutions depart very little from the linear curves, even 
when the individual inertial and centrifugal terms are quite large. Rogers t Owen 
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Both disks, radial inlet 
UDstream disk, axial inlet 

Laminar flow Turbulent flow 

5 8 5 s 
1.12 1.59 0.755 4.51 

Dbwnstream disk, axial iniet 2.26 1.59 1.16 5.85 

TABLE 6. Possible starting values of 5 and S for radial outflow 

(1983) have investigated the relative size of all the terms in the equations, and they 
show that the nonlinear terms tend to be self-cancelling. This means that the linear 
theory (that is, the true Ekman layer) is a good approximation for a much wider range 
of conditions than would be expected. 

It is possible that, in an experiment, a laminar entraining boundary layer may 
develop into a turbulent Ekman layer or that a turbulent entrainment layer may 
develop into a laminar Ekman layer. If this occurs, the simple universal relationships 
are not valid, and the matching of the Ekman layer to the entrainment layer must 
be carried out separately for each set of experimental data. 

Transition from laminar to turbulent flow may also occur within the ‘free disk’ 
boundary layer. The relevant parameter is the local rotational Reynolds number Re 
(where Re = Qr2/v)  ; i t  is generally accepted that flow in the boundary layer will be 
turbulent for Re 2 3 x lo5. Further, transition from turbulent to laminar flow may 
occur within the Ekman layer. This transition is associated with the radial Reynolds 
number Re,; whilst there is no generally accepted value, it has been shown in 34.2 
that the flow in an Ekman layer is turbulent for Re, 2 180. It is therefore possible 
for an entrainment layer to start with laminar flow (at small radii), to become 
turbulent and then develop into an Ekman layer which could begin by being 
turbulent and then become laminar ! In  fact, there is a variety of possible combinations 
of laminar and turbulent flow in the two layers on each disk. For simplicity, the 
computations have been carried out only for those cases where transition does not 
occur within the Ekman layer. 

5.3.2. Radial inflow 
For inflow, the initial value of 5 can vary considerably from experiment to 

experiment, depending on the values of C, and Re,. It may happen that the largest 
value of I 5 I (which occurs near the peripheral inlet) in one experiment is less than 
the smallest value (near the central outlet) in another experiment. There can, 
therefore, be no ‘universal’ curves (like those found in the outflow case), and each 
set of experimental data must be treated separately. 

The simplest model is to start the computation at the stagnation point where x = ci 
with V = 0 (that is, v+ = Or). It is not obvious what initial value of 6 should be used, 
but test computations have shown that the solution is not sensitive to the value 
chosen for 6,. 

6. Comparison with experiments 
In figures 5-11 a comparison is made between the theory discussed in $5 and the 

experimental values of the tangential component of velocity, obtained in the rigs 
described in $3, For convenience, subscripts L and T are used to indicate laminar 

9-2 
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F'IGTJBE 3. The effect of different starting conditions on the variation of the non-dimensional 
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61 = 0.01, (b)  61 = 0.1, (c) 61 = 0.5, (d) 61 = 1.0. ---, 81 = 2, v#,I/QT = 1 ; - - -, 2, 0; --- , 10,1; 

, 10 ,O;  -, linear theory (8 = 1, v4/Qr = 1 - l/f). 
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256 J .  M .  Owen, J .  R. Pincornbe and R. H .  Rogers 

and turbulent values, the subscript e is used to denote the quantities in table 6 (with 
the addition of a prime, where necessary, to indicate values for the downstream disk 
with an axial inlet), and the subscript I is used for starting and initial values. In each 
diagram, the theoretical curves corresponding to the linear theories of Q2.l and 2.3 
are also shown. The measurements were made in or near the mid-axial plane (z = $8).  

6.1. Radial outflow 
For the theoretical curves in figures 5 to 8, various starting conditions were used. 
When tI = t,, it is consistent to take 6, = 6,. When the computation is started well 
within the source region, it can be assumed that the Ekman layer is very large 
initially; a convenient value to take for 6: is $8 and, for all the experiments reported 
here, this means that 8, lies between 3 and 30. The results of the computations are 
insensitive to the value of 6, within the range 1 to 100, and so (with the exception 
of one curve in each of figures 5a  and 5 b )  all the curves shown here have been 
computed with 6, = 15. 

Figures 5 ( a )  and (b) show the variation of v+/Qr with 5 when the experimental 
values of Re, were less than and greater than 180, respectively. Those points which 
were (according to the criteria given in $4.3) subject to the effects of ingress have 
been omitted from the figures. For laminar flow, the experimental data ranged over 
the conditions s / b  = 0.133 and 0.267, 170 < C,  < 970, 2.5 x lo4 < Re+ < 8.1 x lo5, 
0.40 < z < 0.98. For turbulent flow, the corresponding conditions were s/b = 0.133 
and 0.267, 690 < C ,  < 2500, 2.5 x lo4 < Re4 < 1.2 x loo, 0.60 < x < 0.98. Data 
points arising from experiments with radial and axial inlets are shown by separate 
symbols. Also shown are the theoretical linear and nonlinear curves ; the latter have 
starting values cI = Ee, 0.1 and 0.5 (together with the appropriate values of S,, and 

Superficial inspection of the graphs reveals that there is broad agreement between 
the theoretical curves and the experimental data (including many of the data that 
lie within the source region). Most of the scatter occurs in the data from rig 3 (which 
was prone to leakage), and is greater for turbulent flow than for laminar flow. 

For laminar flow, figure 5 ( a )  shows that the nonlinear curves for which 5, < 0.5 
merge with each other before v+/Qr x 0.1 (f x 1) ;  they merge with the curve having 
f I  = f, when v#/Qr x 0.5 ( f x  2) and with the linear curve when v+/Qr xO.9 
(5 z 10). For turbulent flow, all three nonlinear curves merge with each other and 
with the linear curve when v#/Qr x 0.4 (6 x 1.7).  It may be noted that, in both 
diagrams, data points for which v#/Qr < 0.1 are in the source region. For the lower 
values off shown, there is good agreement between the nonlinear curves and, despite 
the scatter, the experimental data for both laminar and turbulent flow. Further, it 
can be seen that many of the points in the source region also lie on the nonlinear curves 
(except for the laminar curve with tI = 6,); for this reason, the theoretical curves for 
the remaining outflow diagrams have been started with = 0.1. For the larger values 
of 6 shown, the experimental data are consistently below the theoretical curves, 
though only slightly below in the laminar case. The difference between the average 
of the measured values and the theoretical curves in turbulent flow appears to be a 
maximum when f x 2 (v+/Qr a 0.5); at this point the average error in v#/& is 
approximately 7 yo of the theoretical value. 

Bearing in mind that three rigs were used over a wide range of conditions, it  appears 
that tL and tT can act as universal parameters for laminar and turbulent flow 
respectively. 

Figure 6 shows the variation of v6/Qr with C,, at (a) x = 0.633 and (b) x = 0.833 

v+, I = 0). 
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FIQURE 5. Variation of tangential component of velocity with the non-dimensional variable 6 for 
outflow. (a) Re, < 180, laminar theory; (b)  Re,. > 180, turbulent theory: - - -, linear theory; -, 
nonlinear theory (5, = &, 8, = a,, V,, I = 0) ; ---, nonlinear theory (& = 0.5,8, = 15, V , ,  I = 0) ; 

, nonlinear theory (& = 0.1, 8, = 15, V,,I = 0). Experimental data: 0,  radial inlet; A, axial 
inlet. 

in rig 2 ( s lb  = 0.133), for three values of Re4. It should be noted that all the data 
in figures 6 to 8 (with the exception of one set of data in figure 8a) were obtained 
using an axial inlet. 

In figures 6(a) and (b), the intercepts between the linear laminar and turbulent 
curves occur where C,  = 716 and 942 respectively; in both cases, the intercept 
corresponds to Re,. = 180. For both graphs, agreement between the experimental data 
and the nonlinear curves is, in the main, good. The data obtained with 5 = 0.633 and 
Reg = lo6, in which the theoretical curves tend to zero and the experimental data 
remain positive, are the exception to this agreement : no satisfactory explanation 
has yet been found for this. It is worth noting that, in the source region of rig 2, 
vg/Qr 2 0.1 ; measured values of v4 were always positive. 

Figure 7 shows the variation of v#/Qr with Reg for (a) three values of C, for which 
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FIGURE 6. Variation of tangential component of velocity with flow rate for outflow. (a) x = 0.633; 
(b)  0.833. - - -, linear theory; -, nonlinear theory. Experimental data: A, Re) = lob; ., 2 x l@; 
+, 4 x l@. Hollow symbols are in the source region. 

Re, < 180 and (b) three values of C ,  for which Re, > 180. The data for C, = 1414 
and 2500 were obtained using rig 2, and the other data were obtained in rig 3. 

In  figure 7(a), the measured velocities are, apart from those at the highest 
rotational speeds, in good agreement with the nonlinear curves. The fact that the 
measured values for Re6 > 0.8 x LO6 are lower than the theoretical curves is believed 
to be related to the presence of ingress into the sink layer. From figure 7(b), it  can 
be seen that the divergence between the linear and nonlinear theoretical curves is 
greater than for the laminar results in figure 7(a) .  For C ,  = 1414 and 2500, the 
agreement between the measured velocities and the nonlinear curves is good; the 
reason for the disagreement when C, = 940 (in rig 3) is not understood. 

Figure 8 shows the radial variation of v6/Qr for (a) laminar flow with Re6 = 5 x lo4 
and (b) turbulent flow with C,  = 2500. Referring to figure 8(a) ,  the tests for C,  = 253 
and 487 were conducted with an axial inlet; the tests for C ,  = 689 were conducted 
with a radial inlet. The source region is, as expected, smaller in the latter case; as 
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FIGURE 7. Variation of tangential component of velocity with rotational speed for outflow 
(z = 0.767). (a) Re, < 180, laminar theory; (b )  Re, > 180, turbulent theory: - - -, linear theory; -, 
nonlinear theory. Experimental data: A, (a)  C, = 170; (b)  940; ., (a) 396; (b)  1414; +, (a)  710; 
( b )  2500. Hollow symbols are in source region. 

a consequence, the experimental data are in good agreement with the nonlinear curve 
over a wider range than is the case for the axial inlet data. Referring to figure 8 ( b ) ,  
the experimental data tend to be higher than the nonlinear curves for v#/Or < 0.4 
(6 < 1.7) and sightly lower for v+/Qr > 0.4. 

6.2. Radial inflow 
The starting value of z for the computations for radial inflow are given by zI = ci, 
where c is the swirl fraction described in $4.1.2. For shroud A, the size of the source 
region waa found to be in good agreement with the predictions described in that 
section if c = 0.54 for laminar flow and c = 0.59 for turbulent flow. However, better 
agreement for the distribution of the tangential component of velocity is obtained 
by taking c = 0.59 for this shroud for both laminar and turbulent flow; this gives 
zI = 0.77. For the foam-filled shroud F, where the incoming fluid was given 
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FIGURE 8. Variation of tangential component of velocity with radius for outflow. (a)  Re, < 180, 
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( b )  Re4 = 8.17 x lo6; +, (a) C, = 689, (b)  Re4 = 1.1 x lo6. Hollow symbols are in source region. 

4: 

‘solid-body’ rotation, c was taken to be unity; this gives zI = 1. (Although not 
presented here, results for shroud E, with its wide slot at  inlet, were also computed. 
For this shroud it is to be expected that the swirl fraction would be much smaller, 
and c = 0.4 gave fair agreement with experiments.) 

Assuming, as in the outflow case, that S: =is, the value of 81 lies between 3.5 
and 31 ; computations carried out for values between 1 and 100 showed negligible 
variation in the theoretical curves. For all the computations discussed below, values 
of 6, = 15 and V , , ~ / Q ~  = 1 were used. 

Figures 9 to 11 show comparisons between the measured and computed tangential 
components of velocity, inside the interior core between the Ekman layers, for radial 
inflow in rig 3. Nearly 300 velocity measurements were made for s / b  = 0.133, 
170 < I C, I < 1800, 2.9 x lo4 < Re, < 8 x lo5, 0.28 < 2 < 0.93. The data presented 
in these figures were chosen to illustrate the salient features of the flow and to show 
typical comparisons between the theoretical and experimental results. As explained 
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in $5.3.2, the results of the computations depend strongly on starting values o f f ;  
for this reason, although 5 is a useful variable for the computations, it cannot be 
thought of as a universal parameter, and no curves are presented for v4/12r as a 
function of f .  

Figure 9 shows the radial variation of v,/& for (a) laminar flow and (b) turbulent 
flow. The measurements were made using the shroud A ;  the curves shown are those 
obtained by the linear theory of $2, the nonlinear theory of $ 5  (with the starting 
conditions discussed above) and, for z > z,, the free-vortex distribution given in (4.4) 
with c = 0.59. It should be noted that the intercepts between the latter curve and 
the linear curve mark the approximate position of the limit, x = xe, of the source 
region. 

Referring to figure 9(a) ,  the nonlinear curves diverge from each other for x < 0.77 
and are, except for the results for Re, = 6 x lo5, in good agreement with the measured 
velocities. In the main, the linear curves overestimate, and the free-vortex curve 
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FIGTJRE 10. Variation of tangential component of velocity with radius for inflow (shroud F ) .  (a) 
Re, < 180, laminar theory; (b)  Re, > 180, turbulent theory: - - -, linear theory; -, nonlinear 
theory; ---, free vortex. Experimental data: ., (a) C, = -440, Re4 = 9.85 x 1W; (b)  - 1425, 
9 .85~10' ;  + (a) -440, 1 . 9 7 ~  10'; (b )  -1396, 1 . 9 7 ~  10'; A, (a) -399, 3 .45~10' ;  (b) -1310, 
3.45 x 106. 

underestimates, the measured values. It is clear that a larger value of the swirl 
fraction c would produce better agreement for xI < x < 1, and this would have little 
effect on the nonlinear Ekman-layer curves. Similar comments apply to figure 9 (b), 
where the agreement between the nonlinear turbulent curves and the measured 
velocities is, for most tests, better than for the laminar case. 

Figure 10 also shows the radial variation of v4/S2r for (a) laminar and (b) turbulent 
flow. Here measurements were made using shroud F, and the theoretical curves using 
c = 1. Referring to figure 10 (a), the linear curves overestimate the experimental data, 
but the agreement between the nonlinear curves and the data is good, particularly 
at the smaller values of x. Similar comments apply to figure 10 (b), but the agreement 
between the nonlinear turbulent curves and the measured velocities is not as good 
as it was for shroud A.  

Figure 11 shows the variation of vJOr (at x = 0.467 and using shroud A) with (a) 
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Rer, for I C, I = 170, 396 and 946, and with (b) I C, 1, for Rer = 4 x lo6 and 6 x lo6. 
Referring to figure 11 (a), the agreement between the nonlinear laminar theory and 
the experimental measurements for I C, I = 170 and 396 (where Re, < 180), is very 
good. The agreement between the nonlinear turbulent theory and the experimental 
velocities for I C, I = 946 (where Re, > 180) is also very good (apart from two 
measurements at the smaller value of Rer). 

Referring to figure 11 (b), the intercept between the linear laminar and turbulent 
curves occurs at I C, I = 528 (Re, = 180). For the smaller values of I C,  I, the measured 
velocities are in good agreement with the nonlinear laminar curves; for the larger 
values of I C, I, the meaeured velocities (with the exception of two meaeurements at 
Rer = 4 x lo6) are in'good agreement with the nonlinear turbulent curves. As for the 
outflow results, it  would appear that Re, = 180 can be regarded aa a reamnable 
criterion for transition from laminar to turbulent flow. 
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7. Conclusions 
Models for the flow in the source region have been presented, and the radial extent 

of the region predicted, for a rotating cavity with either a radial outflow or a radial 
inflow of fluid. For radial outflow, it is assumed that the boundary layer in the source 
region is similar to that on a rotating ‘free disk’; for radial inflow, a free vortex is 
postulated outside the boundary layer. The size of the source region is estimated in 
both cases by assuming that the entrainment layer becomes an Ekman layer when 
exactly half the incoming fluid has been entrained by each disk in the cavity; good 
agreement was found with the experimental measurements. 

Both linear and nonlinear theories for the Ekman layers have been developed using 
integral-momentum techniques. The predictions of the tangential component of 
velocity outside the Ekman layers have been tested against extensive velocity 
measurements made, using laser-Doppler anemometry, inside three different experi- 
mental rigs. Tests were conducted over a wide range of operating conditions, and 
of inlet conditions, with either radial outflow or radial inflow of air imposed on the 
rotating system. 

For the radial-outflow case, the experimental measurements confirmed that there 
were universal relationships between the non-dimensional tangential component of 
velocity w /Qr and the variables EL and ET; these variables are special cases of the 
variable {defined in (5.39), with p = 1 for laminar flow and p given by (5.23) for 
turbulent flow. Transition from laminar to turbulent flow in the Ekm& layers 
occurred at, or near, the intercept of the laminar and turbulent linear curves when 
Q/2nvr x 180. For laminar radial outflow, the linear curves were in good agreement 
with the experimental data for 3 < fL < 20; the nonlinear curves were in good 
agreement with the data for the entire experimental range 0.1 < fL < 20. For 
turbulent radial outflow, the linear curves were in reasonable agreement with the data 
for 1.5 < f T  < 4 ; the nonlinear curves were in reasonable agreement with the data 
for 1 < fT < 4 (no data were available for ET > 4). 

For radial inflow, there were no universal relationships between w#/bar and tL or 
f T ,  and the results (both theoretical and experimental) depend heavily on conditions 
at the inlet. The nonlinear computations, for both laminar and turbulent flow, were 
begun inside the source region where r /b  = ci (where c is an empirically determined 
swirl fraction) at a point where there was a stagnation point on the disk, and the 
initial value of w6/bar wasunity. As for the radial-outflow case, transition from laminar 
to turbulent flow occurred when I Q 1/2nvr x 180. The laminar linear curves tended 
to overestimate the velocities, particularly at the larger values of r /b  (near the source 
region); the nonlinear laminar and turbulent curves were, in the main, in good 
agreement with the experimental data. 

The extension of the methods used in this paper to the important case of non- 
isothermal flow involves allowing for the dependence of density and viscosity on 
temperature, together with discussion of an integral energy equation. In  this case 
too, it is necessary to use the theory, in the way described in $5,  to determine the 
flow within the boundary layers in the source region. A preliminary account of this 
work (together with more details of some of the work presented in this paper) is given 
in Owen & Rogers (1983), Rogers & Owen (1983), and Pincombe, Owen & Rogers 
(1983). Further work on the problem of heat transfer is in progress, and it is hoped 
to report on this in the near future. 



Source-sink flow inside a rotating cavity 265 

The authors wish to thank Rolls-Royce Limited, Motoren- und Turbinen-Union and 
the Science and Engineering Research Council for sponsoring much of the work 
described in this paper. They are also indebted to Mr M. Firouzian for his assistance 
with the velocity measurements for radial inflow. 

R E F E R E N C E S  

BARCILON, V. 1970 Some inertial modifications of the linear viscous theory of steady rotating fluid 

BAYLEY, F. J. & OWEN, J. M. 1970 The fluid dynamics of a shrouded disk system with a radial 

BENNETTS, D. A. & HOCKING, L. M. 1973 On nonlinear Ekman and Stewartson layers in a rotating 

BENNETTS, D. A. & JACKSON, W. D. N. 1974 Source-sink flow in a rotating annulus: a combined 

CHEW, J. W., OWEN, J. M. & PINCOMBE, J. R. 1984 Numerical predictions for laminar source sink 

COCHRAN, W. G. 1934 The flow due to a rotating disc. Proc. Camb. Phil. SOC. 30, 365. 
DORFMAN, L. A. 1963 Hydrodynamic Resistance and the Heat Loss of Rotating Solids. Edinburgh: 

Oliver and Boyd. 
FALLER, A. J. 1963 An experimental study of the instability of the laminar Ekman boundary layer. 

J. Fluid Mech. 15, 560. 
FIROUZIAN, M., OWEN, J. M., PINCOMBE, J. R. & ROGERS, R. H. 1985 Flow and heat transfer in 

a rotating cylindrical cavity with a radial inflow of fluid. Parts I and 11. Intl J. Heat and Fluid 
Flow. To be published. 

flows. Phys. Fluids 13,537. 

outflow of coolant. J. Enpq Power 92, 335. 

fluid. Proc. R. SOC. Lond. A 333,469. 

laboratory and numerical study. J. Fluid Mech. 66, 689. 

flow in a rotating cylindrical cavity. J. Fluid Mech. 143, 451. 

GREENSPAN, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press. 
HIDE, R. 1968 On source-sink flows in a rotating fluid. J. Fluid Mech. 32, 737. 
KLRMLN, TH. VON 1921 a e r  laminare und turbulente Reibung. 2. angew. Math. Mech. 1, 233. 
OWEN, J. M. & BILIMORIA, E. D. 1977 Heat transfer in rotating cylindrical cavities. J. Mech. Enpq  

Sci. 19, 175. 
OWEN, J. M. & PINCOMBE, J. R. 1980a Velocity measurements inside a rotating cylindrical cavity 

with a radial outflow of fluid. J. Fluid Mech. 99, 111. 
OWEN, J. M. & PINCOYBE, J. R. 1980b The use of optical techniques in the interpretation of heat 

transfer measurements. AGARD Cmf. Proc. 281, 15-1. 
OWEN, J. M. & ROGERS, R. H. 1975 Velocity birtsing in laser doppler anemometers. In Proc. Intl 

Symposium on h e r  Doppler Anemometry (LDA-75), 89. 
OWEN, J. M. & ROGERS, R. H. 1983 Solution of the integral momentum equations for an Ekman 

layer in a heated rotating cavity. 1. The full equations and the linear approximation. Rep. No. 
80/TFMRC/15a, School of Enpq and Appl. Sciences, University of Sussex. 

PHADKE, U. P. & OWEN, J. M. 1983 An investigation of ingress for an ‘air-cooled’ shrouded 
rotating disk system with radial-clearance seals. J. Enpq P o w r  105, 178. 

PINCOMBE, J. R. 1984 Optical measurements of the flow in a rotating cylinder. D.Phi1. thesis, 
University of Sussex. 

PINCOMBE, J. R., OWEN, J. M. & ROGERS, R. H. 1983 Solution of the integral momentum 
equations for an Ekman layer in a heated rotating cavity. 3. Comparison between theory and 
experiment. Rep. No. 82/TFMRC/17a, School of Enqngand Appl. Sciences, Univeraityof Swam. 

ROGERS, R. H. & OWEN, J. M. 1983 Solution of the integral momentum equations for an Ekman 
layer in a heated rotating cavity. 2. The nondimensional form of the equations and the 
numerical solution. Rep. No. 81/TFMRC/lBa, School of Enpq and Appl. Sciences, University 
of Susses. 

SCHJJCHTING, H. 1978 Boundary-Layer Theory. New York: McGraw-Hill. 
TATRO, P. R. & MOLLO-CHRISTENSEN, E. L. 1967 Experiments on Ekman layer stability. J. n u i d  

Mech. 28,531. 


